Health & Medical Health & Medical

Tricuspid Atresia Medication: Antiarrhythmics, inotropic agents, Diuretics

Tricuspid Atresia Medication: Antiarrhythmics, inotropic agents, Diuretics

Medication Summary



Digitalis and diuretics are used to control the congestive heart failure present in patients with tricuspid atresia.

Antiarrhythmics, inotropic agents



Class Summary



Improve ventricular contractility and maintain normal sinus rhythm.

Digoxin (Lanoxin, Lanoxicaps)



Cardiac glycoside with direct inotropic effects in addition to indirect effects on the cardiovascular system. Acts directly on cardiac muscle, increasing myocardial systolic contractions. Indirect actions result in increased carotid sinus nerve activity and enhanced sympathetic withdrawal for any increase in mean arterial pressure.

Diuretics



Class Summary



Decrease circulating pulmonary blood volume.

Furosemide (Lasix)



Increases excretion of water by interfering with chloride-binding cotransport system, which in turn inhibits sodium and chloride reabsorption in ascending loop of Henle and distal renal tubule.

Individualize dose to patient. Depending on response, administer at increments of 20-40 mg, no sooner than 6-8 h after previous dose, until desired diuresis occurs. When treating infants, titrate with 1-mg/kg/dose increments until a satisfactory effect is achieved.

Follow-up



Mary C Mancini, MD, PhD, MMM Professor and Chief of Cardiothoracic Surgery, Department of Surgery, Louisiana State University School of Medicine in Shreveport

Mary C Mancini, MD, PhD, MMM is a member of the following medical societies: American Association for Thoracic Surgery, American College of Surgeons, American Surgical Association, Society of Thoracic Surgeons, Phi Beta Kappa

Specialty Editor Board

Francisco Talavera, PharmD, PhD Adjunct Assistant Professor, University of Nebraska Medical Center College of Pharmacy; Editor-in-Chief, Medscape Drug Reference

Disclosure: Received salary from Medscape for employment. for: Medscape.

Ronald J Oudiz, MD, FACP, FACC, FCCP Professor of Medicine, University of California, Los Angeles, David Geffen School of Medicine; Director, Liu Center for Pulmonary Hypertension, Division of Cardiology, LA Biomedical Research Institute at Harbor-UCLA Medical Center

Ronald J Oudiz, MD, FACP, FACC, FCCP is a member of the following medical societies: American College of Cardiology, American College of Chest Physicians, American Thoracic Society, American College of Physicians, American Heart Association

Disclosure: Serve(d) as a speaker or a member of a speakers bureau for: Actelion, Bayer, Gilead, Lung Biotechnology, United Therapeutics<br/>Received research grant from: Actelion, Bayer, Gilead, Ikaria, Lung Biotechnology, Pfizer, Reata, United Therapeutics<br/>Received income in an amount equal to or greater than $250 from: Actelion, Bayer, Gilead, Lung Biotechnology, Medtronic, Reata, United Therapeutics.

Chief Editor

Richard A Lange, MD, MBA President, Texas Tech University Health Sciences Center, Dean, Paul L Foster School of Medicine

Richard A Lange, MD, MBA is a member of the following medical societies: Alpha Omega Alpha, American College of Cardiology, American Heart Association, Association of Subspecialty Professors



Park W Willis IV, MD Sarah Graham Distinguished Professor of Medicine and Pediatrics, University of North Carolina at Chapel Hill School of Medicine

Park W Willis IV, MD is a member of the following medical societies: American Society of Echocardiography

Acknowledgements

The authors and editors of Medscape Reference gratefully acknowledge the contributions of previous author Frank Sheridan, MD to the development and writing of this article.

References

  1. Tandon R, Edwards JE. Tricuspid atresia. A re-evaluation and classification. J Thorac Cardiovasc Surg. 1974 Apr. 67(4):530-42. [Medline].
  2. Weinberg PM. Anatomy of tricuspid atresia and its relevance to current forms of surgical therapy. Ann Thorac Surg. 1980 Apr. 29(4):306-11. [Medline].
  3. Schneider AW, Blom NA, Bruggemans EF, Hazekamp MG. More Than 25 Years of Experience in Managing Pulmonary Atresia With Intact Ventricular Septum. Ann Thorac Surg. 2014 Aug 19. [Medline].
  4. Karamlou T, Ashburn DA, Caldarone CA, et al. Matching procedure to morphology improves outcomes in neonates with tricuspid atresia. J Thorac Cardiovasc Surg. 2005 Dec. 130(6):1503-10. [Medline].
  5. Airan B, Sharma R, Choudhary SK, et al. Univentricular repair: is routine fenestration justified?. Ann Thorac Surg. 2000 Jun. 69(6):1900-6. [Medline].
  6. Wong ML, Sim EK, Goh JJ, et al. Bidirectional cavopulmonary anastomosis. Ann Acad Med Singapore. 1999 Mar. 28(2):237-40. [Medline].
  7. Kreutzer C, Kreutzer J, Kreutzer GO. Reflections on five decades of the fontan kreutzer procedure. Front Pediatr. 2013 Dec 18. 1:45. [Medline]. [Full Text].
  8. Mainwaring RD, Reddy VM, Hanley FL. Completion of the three-stage Fontan pathway without cardiopulmonary bypass. World J Pediatr Congenit Heart Surg. 2014 Jun 23. 5(3):427-433. [Medline].
  9. Alexiou C, Delany DJ, Keeton BR, Monro JL. Double-barreled conduit for right atrioventricular connection in tricuspid atresia: a new technique. J Thorac Cardiovasc Surg. 2000 Oct. 120(4):820-2. [Medline].
  10. Annecchino FP, Fontan F, Chauve A, Quaegebeur J. Palliative reconstruction of the right ventricular outflow tract in tricuspid atresia: a report of 5 patients. Ann Thorac Surg. 1980 Apr. 29(4):317-21. [Medline].
  11. Behrendt DM, Rosenthal A. Cardiovascular status after repair by Fontan procedure. Ann Thorac Surg. 1980 Apr. 29(4):322-30. [Medline].
  12. Chopra PS, Rao PS. Corrective surgery for tricuspid atresia: which modification of Fontan- Kreutzer procedure should be used? A review. Am Heart J. 1992 Mar. 123(3):758-67. [Medline].
  13. Dore A, Somerville J. Right atrioventricular extracardiac conduit as a fontan modification: late results. Ann Thorac Surg. 2000 Jan. 69(1):181-5. [Medline].
  14. Freedom RM, Hamilton R, Yoo SJ, et al. The Fontan procedure: analysis of cohorts and late complications. Cardiol Young. 2000 Oct. 10(4):307-31. [Medline].
  15. Gale AW, Danielson GK, McGoon DC, et al. Fontan procedure for tricuspid atresia. Circulation. 1980 Jul. 62(1):91-6. [Medline].
  16. Haas GS, Hess H, Black M, et al. Extracardiac conduit fontan procedure: early and intermediate results. Eur J Cardiothorac Surg. 2000 Jun. 17(6):648-54. [Medline].
  17. [Guideline] Kelley MJ, Levin DC, Bettmann MA, Gomes AS, Grollman J, Henkin RE, et al. Suspected congenital heart disease in the adult. American College of Radiology. ACR Appropriateness Criteria. Radiology. 2000 Jun. 215 Suppl:67-72. [Medline].
  18. Waller AH, Horgan S, Groarke JD, Valente AM, Koplan BA, Blankstein R. Integration of cardiac magnetic resonance imaging in pre-procedural planning and electroanatomical mapping for catheter ablation after a Fontan-Bjork correction of tricuspid atresia. Eur Heart J Cardiovasc Imaging. 2014 Nov. 15(11):1306. [Medline].


Fontan procedure: Illustration of the atrial-to-pulmonary artery anastomosis.

Tricuspid atresia. Frontal chest radiograph in a child with tricuspid atresia and a nonrestrictive ventricular septal defect. There is pulmonary plethora. Note the prominent right atrium.

Tricuspid atresia. Frontal chest radiograph in a child with tricuspid atresia and a nonrestrictive ventricular septal defect, mild pulmonary plethora and, atypically, a right aortic arch (arrow). Note enlarged right atrium and the typical rounded configuration of the left cardiac apex. In the absence of the right ventricle, the left ventricle becomes hypertrophied and dilated, causing the development of a more rounded cardiac apex.

Tricuspid atresia. Frontal chest radiograph in an adult with untreated tricuspid atresia. Increased pulmonary blood flow through a nonrestrictive ventricular septal defect has been tolerated for years but has led to the development of pulmonary hypertension, as shown by the large proximal pulmonary arteries (arrows) and pruned distal pulmonary arteries. The development of pulmonary hypertension prevents conventional surgical treatment.

Tricuspid atresia. Axial ECG-gated spin-echo MRI in an adult patient with tricuspid atresia shows the high signal from atrioventricular sulcus tissue (black arrow), replacing the tricuspid valve, and an enlarged right atrium. Note how the mitral valve orientation (white arrows) is abnormal. The right ventricular outflow chamber (R) is anterior.

Tricuspid atresia. Axial ECG-gated spin-echo MRI (10 mm caudad to previous Image ) shows the high signal intensity from atrioventricular sulcus tissue and the restrictive ventricular septal defect (arrow) between the ventricle and the right ventricular outflow chamber. Note the dilated and rounded left ventricular cavity.

Tricuspid atresia. Axial ECG-gated spin-echo MRI in an adolescent patient with tricuspid atresia with modified Fontan repair. The Fontan conduit (white arrow) runs from the right atrium (A) around the front of the heart towards the pulmonary artery. Note that the front of the heart is identified by the anterior atrioventricular sulcus tissue containing the signal void of the right coronary artery (black arrow).

Tricuspid atresia. Axial ECG-gated spin-echo MRI in an adolescent patient with tricuspid atresia with modified Fontan repair (10 mm inferior to previous Image ). Thick atrioventricular sulcus tissue (arrow) is noted replacing the tricuspid valve. The ventricular septal defect has been repaired, and the ventricular septum is now intact.

Tricuspid atresia. Apical 4-chamber 2-dimensional echocardiogram shows atrioventricular sulcus tissue (solid arrow) replacing the tricuspid valve in a patient with tricuspid atresia. Note the enlarged right atrium posterior to the abnormal atrioventricular sulcus tissue. A moderate-sized ventricular septal defect (open arrow) is noted between the ventricle (V) and outflow chamber (C).

Tricuspid atresia. Fluoroscopic image shows a Park blade septostomy catheter with cutting blade extended in a patient with tricuspid atresia. The catheter has been passed through a restrictive atrial septal defect, which was resistant to balloon septostomy. The blade was used to make 2 cuts in the atrial septum, starting a tear, which then was completed using balloon septostomy.

Tricuspid atresia. Frontal ventriculogram in a patient with tricuspid atresia shows the pulmonary arteries arising from a small right ventricular type outflow chamber (arrow). A restrictive ventricular septal defect and a large globular ventricle (V) are noted.

Tricuspid atresia. Steep left anterior oblique ventriculogram in a patient with tricuspid atresia shows a restrictive ventricular septal defect (between arrows) and a typically large globular ventricle (V).

Tricuspid atresia. Steep left anterior oblique ventriculogram in a patient with tricuspid atresia shows a larger nonrestrictive ventricular septal defect (white arrow). A typically large globular ventricle (V) is seen, which is receiving inflow from a single atrioventricular valve (mitral valve, black arrows). Note how the aorta and pulmonary arteries are superimposed, making interpretation of their attachments difficult. Angiography must be performed in multiple projections to fully define complex relationships accurately.

Tricuspid atresia. Shallow right anterior oblique view from a ventriculogram in a patient with tricuspid atresia shows mitral regurgitation with contrast filling in both the left atrium (LA) and right atrium (RA), through the atrial septal defect. Contrast outlines the thick band of atrioventricular sulcus tissue (arrow), which is demonstrated well on cross-sectional imaging techniques.

Tricuspid atresia. Right anterior oblique ventriculogram in a patient with tricuspid atresia shows simultaneous filling of the aorta (Ao) and pulmonary arteries (PA). Nonrestrictive ventricular septal defect was present, which necessitated pulmonary artery banding (arrow) to reduce pulmonary blood flow and protect against development of pulmonary hypertension before proceeding to a Fontan procedure.

Related posts "Health & Medical : Health & Medical"

What Is Vipassana And How Can It Help You?

Health

Interactions between Equetro oral and strong-or-moderate-cyp3a4-inducers-simeprevir

Health

Weight-Loss Cures - The More than The Counter Wide range Explained

Health

USPSTF Guidelines Miss Most Women With Osteoporosis

Health

Ways To Cure Premature Ejaculation - Easy And Practical Suggestions

Health

Half With Diabetes Skip Insulin Injections

Health

Reversing Diabetes Naturally - A Great Fiber Eating habits Aids

Health

Eating Disorders Symptoms- Important Knowledge Base For Cambridge Eating Disorder Center

Health

How to Make Custom Orthotics

Health

Leave a Comment